Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37556064

RESUMEN

The present work studied individual and binary adsorption of fluorides and As(V) in water on pleco fish bone chars (BC), as well as the effect of BC mass variation on the adsorption capacity of fluoride and As(V) in water for human consumption. The results of individual adsorption indicated that the adsorption of fluoride and As(V) on BC depends on solution pH. The adsorption capacity of fluorides at an initial concentration of 30 mg L-1 increases approximately 3 times, from 5.9 to 15.3 mg g-1, when decreasing the pH of the solution from 9 to 5, however, for the case of As(V) an antagonistic effect is observed, the adsorption capacity increases 7 times when raising the pH from 5 to 9, from 18.4 to 132.1 µg g-1 at an initial As(V) concentration of 300 µg L-1. Besides, in the binary adsorption, BC showed a higher affinity to adsorb fluoride since its adsorption capacity decreased from 16.55 to 12.50 mg g-1 as the As(V) concentration increased from 0 to 800 µg L-1 in solution. In contrast, As(V) adsorption was severely affected, decreasing from 140.2 to 32.7 µg g-1 when the fluoride concentration in the solution increased from 0 to 100 mg L-1. On the other hand, in the adsorption of groundwater contaminated with fluoride and As(V), it was determined that increasing the mass of BC from 0.5 to 20 g increases the removal percentage, reaching 99.3 and 75.7% removal for fluoride and As(V), respectively, due to the fact that increasing the mass of the adsorbent leads to a larger area and a greater number of sites that allow the adsorption of these contaminants. The thermodynamic study revealed the spontaneity of fluoride and As(V) adsorption, better affinity for fluoride but higher adsorption rate of As(V) on BC. Characterization techniques such as XRD and EDS allowed identifying hydroxyapatite as the mineral phase of BC, which is responsible for the adsorption of BC. By studying the effect of solution pH on the adsorption capacities and the characterization of BC such as XRD, EDS and TGA, it was determined that the mechanisms of fluoride adsorption are by electrostatic attractions and ion exchange, and for As(V) it is by coprecipitation and ion exchange. It was concluded that BC from pleco fish could be an alternative for treating water contaminated by fluorides and As(V).

2.
Environ Sci Pollut Res Int ; 30(12): 34684-34697, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515879

RESUMEN

Organic xerogel microspheres (SX) were synthesized by inverse emulsion sol-gel polymerization and carbonized to obtain carbon xerogel spheres (SXCs). The catalyst was K2CO3 or Fe(C2H3O2)2, and the clay sodium sepiolite (SNa) or exfoliated vermiculite (Vexf) was added during the synthesis. Depending on the catalyst and clays, the SXCs were designated SXC-K, SXC-Fe, Vexf-K, Vexf-Fe, SNa-Fe, and SNa-K. At pH = 7 and T = 25 °C, the SXCs' adsorption capacities towards diclofenac (DCF) in water increased as follows: SXC-K < Vexf-Fe < SXC-Fe < SNa-Fe < SNa-K < Vexf-K and this order is associated with the SXCs' surface area and mesopore volume. The Vexf-K displayed the highest capacity for DCF due to its optimal textural and chemical properties, and the DCF maximum uptake was 560 mg/g at pH = 6 and T = 35 °C. The adsorption capacity towards Cd2+ and Pb2+ decreased as SX-K > SX-Fe > SXC-K > SXC-Fe, indicating that the non-carbonized materials (SX) presented higher adsorption capacity than the SXCs because the SXs had a higher acidic site content. Adding SNa or Vexf to SXs enhanced the adsorption capacity towards Cd(II), and SNa-SX-K presented an exceptionally high capacity of 182.7 mg/g. This synergistic effect revealed that the Cd2+ was adsorbed on the SX-K acidic sites and by cation exchange on the SNa.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Arcilla , Diclofenaco/química , Microesferas , Cadmio , Metales Pesados/química , Agua , Adsorción , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...